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TL;DR

We consider the following question:

How can reward-free offline interaction data be used

to enhance downstream decision-making tasks?

We propose PDT, an unsupervised pretraining

method for decision making.

Experimental results show that PDT achieves

superior few-shot generalization performance.

Offline RL via Sequence Modeling

Recent works (Chen et al., 2021; Lee et al., 2022) pose

offline RL as a sequence modeling problem.

Trajectory sequences as inputs:

τ̂ = (R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT )
where R̂t =

∑T
t′=t rt′ is the target return.

Autoregressive models (e.g., GPT) as policies:

πθ(at | τ̂1:t−1, st, R̂t)
Next action prediction as the learning objective:

LDT = Eτ̂∼D̂

 T∑
t=1

− log πθ(at | τ̂1:t−1, st, R̂t)


While promising, return-conditioned methods have

their shortcomings:

They can not handle reward-free data, which is much

easier to scale up.

Conditioning on scalar reward values can lead to

inconsistent policies (Paster et al., 2022).

This work: Can we retrofit the return-conditioned frame-

work for unsupervised pretraining?

Our Method: PDT

Causal Transformer

s1 z1 a1 s2 z2 a2 sK zK aK
…

a1 a2 aK

Future-conditioned Sequence Modeling

∼ 𝒈𝜽 (⋅∣ )sK+1 aK+1 sK+t aK+t
…zt

∼ 𝒑𝜽 (⋅∣ )zt st

∼ 𝑷𝜽 (⋅∣ )zt st Rt
෡

Training: Future Trajectory Encoding

Inference: Future Generation

Inference: Controllable Future Generation

Rt
෡ ∼ 𝒇𝜽 (⋅∣ )zt st

∼ 𝒑𝜽 (⋅∣ )zt st

The proposed Pretrained Decision Transformer (PDT) is

a two stage pretrain-then-finetune method:

Offline pretraining: Learning a future-conditioned

policy πθ(at | τ1:t−1, st, z) that utilizes reward-free
future trajectories τt+1:T = (st+1, at+1, . . . , sT , aT ):

z ∼ gθ(· | τt+1:T ) # training
z ∼ pθ(· | st) # inference

Online finetuning: Learning to controllably sample

high-return futures via return prediction:

p(z | R̂t, st) ∝ p(z | st) p(R̂t | z, st)︸ ︷︷ ︸
learned

PDT can be seen as an instance of Successor Features

(SFs, Barreto et al., 2017):

SFs assume that rewards can be decomposed into

task-agnostic dynamics φ and task preference w:

r (s, a) = φ (s, a)> w
PDT tames return conditioning in a similar way:

R̂t =

 T∑
t′=t

φ(st′+1, at′+1)

>

w

where the summation can be pretrained as gθ and w
is learned via return prediction during finetuning.

Experimental Results
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Figure 1. PDT outperforms other unsupervised pretraining methods and performs on par with

its supervised pretraining counterpart in few-shot settings.
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Figure 2. PDT can generate diverse behaviors conditioning on different futures.
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Figure 3. PDT can controllably generate high-return behaviors via online finetuning.

Please refer to our paper and code for more details!


