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Our Method: PDT Experimental Results

- We consider the following question:
How can reward-free offline interaction data be used
to enhance downstream decision-making tasks?
- We propose PDT, an unsupervised pretraining
method for decision making.
- Experimental results show that PDT achieves
superior few-shot generalization performance.

Offline RL via Sequence Modeling

Recent works (Chen et al., 2021; Lee et al., 2022) pose
offline RL as a sequence modeling problem.

- [rajectory sequences as Inputs:
T = (}?1, s1, a1, Ry, 8o, ao, ..., Ry, st ar)
where R; = th ry 1S the target return.
- Autoregressive models (e.g., GPT) as policies:
We(at \ T1t—1, St f{t)

- Next action prediction as the learning objective:
T
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While promising, return-conditioned methods have
their shortcomings:

- They can not handle reward-free data, which Is much
easler to scale up.

- Conditioning on scalar reward values can lead to
inconsistent policies (Paster et al., 2022).

This work: Can we retrofit the return-conditioned frame-
work for unsupervised pretraining?
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Figure 1. PDT outperforms other unsupervised pretraining methods and performs on par with

The prOpOSed Pretraiﬂed D@CiSiOﬂ T’aﬂSfOrmer (P :)—l—) iS its supervised pretraining counterpart in few-shot settings.
a two stage pretrain-then-finetune method: dim o dim 1 dim 2
- Offline pretraining: Learning a future-conditioned y
bolicy mg(ay | T14-1, S¢, z) that utilizes reward-free 9
future trajectories 1117 = (St41, Q415 - - -, ST, AT): . oo 9
z~ go(- | Trr17) # training . dim 3 6 dim 4 dim s
2z~ po(- | s¢) inference - 5 -
. Online finetuning: Learning to controllably sample ¥ :
high-return futures via return prediction: - : -
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Figure 2. PDT can generate diverse behaviors conditioning on different futures.
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PDT can be seen as an instance of Successor Features L — il 25
(SFs, Barreto et al., 2017): L — o
- SFs assume that rewards can be decomposed Into 2 % - ‘
task-agnostic dynamics ¢ and task preference w: : | — |
hopper-medium  hopper-medium-replay walker2d-medium walker2d-medium-replay
r (Sv CL) — ¢ (37 CL) \\4 Figure 3. PDT can controllably generate high-return behaviors via online finetuning.

- PDT tames return Condiﬁoning N a similar way:

- T

A
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where the Summat'on can be pretra'ned as gy and w
IS learned via return prediction during finetuning.

Please refer to our paper and code for more details!



