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Summary

We show that there exist low-rank subspaces in the

pretrained multilingual language models (ML-LMs) that

mainly encode language-specific signals

We present a simple approach LSAR to identify the

subspace in a ML-LM in an unsupervised manner (i.e.,

without any translation pairs)

Empirical results show that LSAR can remove

language-specific signals to facilitate cross-lingual

tasks that only consider semantic information

We demonstrate that the subspace encodes strong

syntactic signals with experimental analysis

Language-agnostic Representations

ML-LMs like mBERT and XLM-R exhibit impressive

cross-lingual ability

But previous works observe that these ML-LMs encode

strong language identity information

Key question:

“Can we extract the language-agnostic part to benefit tasks

that only consider semantic information?”

It is often assumed that each embedding el in language l

can be decomposed in an additive form:

el := sl + al

Low-rank Subspaces in ML-LMs

Our method LSAR is simple but effective

≈

Figure 1. A conceptual illustration of our alignment method LSAR.

Extract d-dimensional embeddings from monolingual

corpora (e.g., OSCAR) of L languages using the ML-LM

to obtain a mean embedding matrix M ∈ Rd×L

Decompose M into two components: a vector µ ∈ Rd

shared among languages and a matrix M s ∈ Rd×r

representing a low-rank subspace on which linguistic

signals are expressed differently for each language:
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Experimental Results

Applying LSAR consistently leads to improvements over

commonly used ML-LMs

mBERT XLM XLM-R LABSE

Original 37.53 28.13 57.68 95.47

Centered 39.57 27.13 61.08 95.56

LIR (k = 1) 39.70 28.75 61.60 95.63

LIR (k = 15) 41.21 31.65 62.80 95.56

LSAR 44.64 33.16 65.05 95.54

Table 1. Retrieval accuracy (%) on Tatoeba (averaged over all 36 languages).

XQuAD-R MLQA-R

En-En X-X En-En X-X

Original 28.57 23.36 35.71 26.21

Centered 35.37 44.66 35.36 42.14

LIR (k = 1) 37.70 44.25 38.03 41.96
LSAR 41.13 45.89 40.55 43.32

Table 2. Answer retrieval mAP (%) on XQuAD-R and MLQA-R of LAReQA (averaged over all

languages).

Analysis

LSAR effectively removes same-language bias
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Figure 2. 2D PCA visualization on LAReQA. We display the embeddings collected from mBERT (X-X)

on the XQuAD-R sub-dataset. Embeddings of the candidate answers (C) in English, Thai, and

Mandarin are shown in small scatters. Embeddings of the question (Q) in English and the

ground-truth answers (A) in English, Thai, and Mandarin are shown in large scatters.

The subspace primarily encodes syntactic information
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Figure 3. Language similarity obtained from syntactic signals vs. language similarity measured by

language-specific sL of mBERT. Each point is a language.
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