

Discovering Low-rank Subspaces for Language-agnostic Multilingual Representations

Handong Zhao² Tong Yu² Shuai Li¹

¹Shanghai Jiao Tong University

²Adobe Research

Summary

Zhihui Xie¹

- We show that there exist low-rank subspaces in the pretrained multilingual language models (ML-LMs) that mainly encode language-specific signals
- We present a simple approach LSAR to identify the subspace in a ML-LM in an unsupervised manner (i.e., without any translation pairs)
- Empirical results show that LSAR can remove

Experimental Results

Applying LSAR **consistently leads to improvements** over commonly used ML-LMs

	mBERT	XLM	XLM-R	LABSE
Original	37.53	28.13	57.68	95.47
Centered	39.57	27.13	61.08	95.56
$LIR\;(k=1)$	39.70	28.75	61.60	95.63
	$11 \cap 1$	$\bigcirc 1$ / \Box	$1 \cap 0 \cap$	$O \Gamma \Gamma I$

Inplace results show that ESAR carrientove language-specific signals to facilitate cross-lingual tasks that only consider semantic information
We demonstrate that the subspace encodes strong syntactic signals with experimental analysis

Language-agnostic Representations

- ML-LMs like mBERT and XLM-R exhibit impressive cross-lingual ability
- But previous works observe that these ML-LMs encode strong language identity information

Key question:

"Can we extract the language-agnostic part to benefit tasks that only consider semantic information?"

- It is often assumed that each embedding \boldsymbol{e}_l in language l

LIR (k = 15) 41.21 31.65 62.80 95.56 LSAR **44.64 33.16 65.05** 95.54

Table 1. Retrieval accuracy (%) on Tatoeba (averaged over all 36 languages).

	XQuAD-R		MLQA-R	
	En-En	X-X	En-En	X-X
Original	28.57	23.36	35.71	26.21
Centered	35.37	44.66	35.36	42.14
$LIR\;(k=1)$	37.70	44.25	38.03	41.96
LSAR	41.13	45.89	40.55	43.32

Table 2. Answer retrieval mAP (%) on XQuAD-R and MLQA-R of LAReQA (averaged over all languages).

Analysis

LSAR effectively removes same-language bias

can be decomposed in an additive form:

 $oldsymbol{e}_l := oldsymbol{s}_l + oldsymbol{a}_l$

Low-rank Subspaces in ML-LMs

Our method LSAR is simple but effective

Figure 1. A conceptual illustration of our alignment method LSAR.

- Extract d-dimensional embeddings from monolingual corpora (e.g., OSCAR) of L languages using the ML-LM to obtain a mean embedding matrix $M \in \mathbb{R}^{d \times L}$
- Decompose M into two components: a vector $\mu \in \mathbb{R}^d$

Figure 2. 2D PCA visualization on LAReQA. We display the embeddings collected from mBERT (X-X) on the XQuAD-R sub-dataset. Embeddings of the candidate answers (C) in English, Thai, and Mandarin are shown in small scatters. Embeddings of the question (Q) in English and the ground-truth answers (A) in English, Thai, and Mandarin are shown in large scatters.

The subspace primarily encodes syntactic information

shared among languages and a matrix $M_s \in \mathbb{R}^{d \times r}$ representing a low-rank subspace on which linguistic signals are expressed differently for each language:

$$\min_{\boldsymbol{\mu}, \boldsymbol{M}_{s}, \boldsymbol{\Gamma}} \left\| \boldsymbol{M} - \boldsymbol{\mu} \mathbb{1}^{\top} - \boldsymbol{M}_{s} \boldsymbol{\Gamma}^{\top} \right\|_{F}^{2}$$

s.t. $\boldsymbol{\mu} \perp \operatorname{Span}(\boldsymbol{M}_{s})$

- Project embeddings onto the null space of $oldsymbol{M}_s$:

$$oldsymbol{a}_l = \left(oldsymbol{I} - oldsymbol{M}_s \left(oldsymbol{M}_s^ op oldsymbol{M}_s
ight)^{-1}oldsymbol{M}_s^ op oldsymbol{e}_l
ight. \ = oldsymbol{e}_l - oldsymbol{M}_soldsymbol{M}_s^ op oldsymbol{e}_l$$

Figure 3. Language similarity obtained from syntactic signals vs. language similarity measured by language-specific s_L of mBERT. Each point is a language.

Email: fffffarmer@sjtu.edu.cn

Code: https://github.com/fffffarmer/LSAR